A Framework for Distributed System Designs

Martin S. Feather

USC / Information Sciences Institute
4676 Admiralty Way, Marina del Rey CA 90292
email: feather@isi.edu

Abstract
We present a framework to structure the space of
designs for a class of distributed systems. The purpose of
this framework is to codify known design knowledge, and
thus, when given the task of developing a new system in this
class, to facilitate:
* navigation - finding designs applicable to the task
* evaluation - identifying the strengths of weaknesses
of a given design, comparing alternative designs
« reification - realizing an abstract design as the solu-
tion to a concrete task
This is illustrated on the class of resource control
systems operating in a distributed setting.
Keywords: design, distributed systems, idealized
requirements, resource control.

1: Introduction

Our interest is in the design of ‘similar’ systems, that is,
systems that fall into a given class (c.g., the class of
resource management systems). In particular, we are
interested in classes whose systems admit to a wide variety
of designs - the wider the variety, the more need for support
to codify design knowledge, so that such knowledge will be
applicable during design of the task at hand.

Our goal is to make use of prior knowledge on how to
design systems in the class. The idea of reuse of knowledge
gained from past designs is, of course, well established. For
example, the Draco work [12,8] is an early representative
of the style in which design is done by refinement from a
specification expressed in a domain-specific language.
Another approach to reusability is to accumulate past
design cases into a repository, from which case-based
retrieval mechanisms are employed to select the design(s)
closest to the specification of the current task (e.g., [13]).
Our approach is to accumulate general design knowledge
about a class of problems within a framework designed for
that class. When faced with the task of designing another
instance in the class, we expect our framework to support
the following activities:

1068-3062/94 $4.00 © 1994 IEEE

Stephen Fickas

Department of Computer Science
University of Oregon, Eugene OR 97403
email: fickas @cs.uoregon.edu

Navigation - as the designer navigates through the space of
design knowledge, the organization of the framework
should ease the designer’s task of finding knowledge that is
potentially relevant to the new system, and, of course,
minimizing time wasted considering knowledge that is not
relevant.

Evaluation - because of our focus upon classes of systems
whose instances admit to a wide variety of designs, a major
part of the design activity will concern the evaluation of
candidate designs with respect to the needs of the task at
hand. The framework should thus make available
evaluation mechanisms, both to judge the strengths and
weaknesses of a single design (with respect to the task
requirements), and to compare and contrast alternative
designs.

Reification - in accumulating design knowledge, there is
the choice of whether to accumulate past cases of designs
(data typical to a case-based reasoning approach, say), or
whether to accumulate design principles gleaned from past
cases of design. We follow the latter approach, and thus,
given a specific task, the framework must provide
mechanisms that apply the design principles to generate
specific designs to meet that task.

We have chosen to focus upon distributed systems, and
for such systems we advocate an approach based upon the
following principles (which we think are relatively novel as
a way of organizing design knowledge):

« begin from an expression of idealized requirements

 employ notions of constraints and responsibility to

determine which components of the system will take
action to meet the requirements

» emerge with a specification of interfaces as the

means by which components exchange the informa-
tion they need to live up to their responsibilities

« view the implementation of interfaces as the combi-

nation of three aspects: when information is trans-
ferred, between whom it is transferred, and what is
the information being transferred.

Section 2 describes these elements in more detail.
Section 3 presents our expression of a class of systems

(resource allocation systems) in this framework. Section 4
shows how a workshop problem fits into this class. Section
5 summarizes the status of our work and concludes the

paper.

2: Elements of framework for distributed
system designs

The key elements that form the basis of our framework
are as follows:

Idealized requirements - the task requirements are first
stated in an idealized, non-distributed fashion. It is in
reference to these idealized requirements that many of the
qualities of prospective designs can be judged.

Constraints and non-determinism - possible system
behaviors are readily stated as the cross-combination of all
possible behaviors of the individual system components
(e.g., passengers entering/exiting elevators; elevators
moving up/down floor by floor); requirements are
expressed as constraints on these behaviors (e.g.,
passengers shall never be moved further from their
destination), ruling out all those that fail to meet one or
more requirement. The combination of these is a
specification denoting precisely those of the possible
behaviors that satisfy all the requirements.

Responsibility and constraint assignment -
constraints are assigned as the responsibility of subsets of
the components (e.g., passengers are responsible for
entering elevators going their way). Only the components
responsible for a constraint need to limit their actions so as
to ensure its satisfaction (e.g., because passengers are
responsible for entering elevators going their way, an
elevator is free to open its doors at a floor at which there are
passengers wishing to go in each direction, since only the
appropriate passengers will board). Sometimes to do this
responsibility assignment it is necessary to subdivide
constraints into pieces such that their combination implies
the original constraint, while each piece can be separately
assigned as the responsibility of individual agents.

In the past we have made the argument for the
importance of these concerns in doing system design [4].
Here, the novelty lies in the application of these ideas to a
design framework, rather than to specific design tasks.

Interfaces - a component’s responsibility for
constraints induces a need for information by which to
determine the appropriate actions to take (e.g., a passenger
boarding an elevator will need to know in which direction
that elevator is about to move in order to know whether he/
she should in fact board that elevator). This need for
information lies at the heart of the communication
interfaces between components (e.g., lights and buttons in
and around elevators). Note that it is completely
unnecessary when requirements are stated in a non-

distributed fashion, since there the assumption is that
information is globally available.

Weakening of constraints - it will often be impossible
(or deemed prohibitively expensive) to implement a perfect
solution to the idealized requirements. This is particularly
the case in a distributed setting. In reaction to this, it will
often be necessary to weaken some of the constraints used
to express requirements. Weakening a constraint allows
violations of that constraint to occur; typically, weakening
will introduce accompanying mechanisms, for example,
‘repair’ mechanisms that try to re-establish the violated
constraint, or ‘penalty’ mechanisms that aim to discourage
the violation of constraints in the first place. Such
weakening may occur anywhere in the design process,
whenever it is recognized that the current design is
unrealizable.

3: Simple example - resource allocator

We use as a simple, illustrative example, that of a
system to ensure the mutually exclusive use of a shared
resource among a set of clients. An instance of this example
was used as the common problem for consideration at the
concurrency and distribution track at the 7th International
Workshop on Software Specification and Design IWSSD-
7). We will show later how their problem statement is
located in our design space.

In the style we are advocating, we explore the design
space of solutions to this task as follows:

3.1: Idealized requirements, constraints and
non-determinism

We begin by stating the requirements of this system as
if it were not distributed, that is, assuming instantaneous
access to a global dataspace of all information about the
status of all parties. In particular, this simplifies from
concerns of communication delays between distributed
processes. Our statement of these idealized requirements is
as follows:

Some number of clients exist, and may wish to use a
shared resource. The possible behaviors of clients with
respect to the resource are indicated in the following state-
transition diagram:

Each client is in one of three mutually exhaustive states
- Using (i.e, using the resource), Waiting (i.c., waiting to
use the resource), or Idle (i.e., neither using the resource,

nor waiting to do so). Possible transitions between these
states are shown as arrows in the above diagram.

The idealized requirements of this system are
expressible as the following constraints:

C1) At most one client at once can be in the Using state.

¢2) There should be no unnecessary waiting, that is,
there should never be a client in the Waiting state and at the
same time no client in the Using state.

C3) No client shall remain in the Waiting state longer
than some (pre-determined) maximum period of time.

It is easy to formally specify the above behaviors and
constraints in a model of system behavior comprising the
state of the entire world (of clients, and the states they are
in) and transitions between those states; all possible
combinations of client activity produces a set of behaviors,
where a behavior is an alternating sequence of states and
transitions. Constraints become predicates on behaviors
(constraints C1 and C2 can be evaluated with respect to
individual states in those behaviors, while constraint C3
needs access to the sequence of states in a behavior, and
some measure of the passage of time). In a temporal model,
they might be written as:

c1) [J ~3 ¢l c2. (Using(cl) A Using(c2) Acl #¢2)
¢ O-3c1. (Waiting(c1) A = 3 c2. Using(c2))

¢3) O V c1. (duration(Waiting(c1)) <
max-wait-duration)

O-= always
The combination of possible behaviors and constraints
denotes those and only those of the behaviors that satisfy
all of the constraints.

3.2: Responsibility and constraint decomposition

The first step in our design model is to decide which
components are ‘responsible’ for which constraints.
Briefly, those and only those components declared as
responsible for a constraint have to restrict their actions so
as to ensure that constraint (in particular, non-responsible
components are to be left free choice from among their
possible actions). See [2] for details.

On the surface, it does not seem appropriate to make
clients in the ldle state responsible for any of the above
constraints. (In particular, a client should always have the
choice of remaining ldle or transitioning to Waiting.
Similarly, a client who is Waiting should not be required
to, or prevented from, transitioning to Idle, and a client
who is Using should not be prevented from transitioning to
Idle.) We deliberately do not elevate this to the status of a
hard and fast requirement, since we can imagine some
circumstances in which the transition from ldle to Waiting
could involve some mixed-initiative strategy between
system and user, especially if we were to consider the states

at finer levels of granularity. For the purposes of this paper,
however, we will follow only the obvious (and most
common) responsibility assignment that makes Waiting
clients responsible for C1 and 2, while both Using and
Waiting clients are responsible for C3.

Notel: A reasonable altemnative would be to have Using
clients also share the responsibility for C1 and/or C2 (e.g.,
in pre-emptive scheduling, a Waiting client who is more
important that a Using client is not to be kept waiting, and
thus that Using client must cooperate by ceasing use of the
resource - perhaps requiring an extension of the allowable
client transitions to include the transition from Using back
to Waiting).

Note2: An unreasonable alternative would be to have
only Waiting clients responsible for (3, since the
cooperation of Using clients to cease using the resource
within some time bound is required (otherwise a client
could ‘hog’ the resource, staying in the Using state while a
Waiting client is kept from using the resource longer than
the predetermined maximum waiting period). Since clients
have no way of forcing each others’ transitions, causing a
Using client to cease using requires the cooperation of that
client, i.e., sharing of responsibility.

3.3: Weakening of constraints

In a distributed setting, we may not assume that clients
have instantaneous access to each others’ status. Rather,
they communicate only via channels that may introduce
arbitrary but finite delays into the transmission of a
message. For now, we will assume that other than such
delays, transmission is perfect, that is, messages are never
lost, garbled, or received in some order other than that in
which they were transmitted.

Because of the potential transmission delays introduced
by the nature of this distributed setting, we may need to
weaken some of our idealized constraints. In particular,
constraint 3, requiring that no client be kept waiting
longer than some pre-determined period, may not be
always attainable in many of the designs that we may wish
to propose.

Similarly, since perfect synchronization between
clients is unattainable (because of unpredictable
transmission delay, and no global clock), constraints C1
and (2 also cannot (both) be guaranteed - consider the case
in which there is one Using client, and one Waiting client;
C1and C2 require that as the Using client transitions to Idle,
the Waiting client simultaneously transitions to Using. The
reader might suspect that our mistake was to have got into
the initial state of this scenario (a Using client who wants
to transition to Idle, and a Waiting client); unfortunately,
this cannot be precluded without limiting clients who are
not responsible for the constraints (e.g., preventing Idle

clients from transitioning to Waiting), and/or precluding
any Using whatsoever.

We thus face the need to weaken some or all of our
requirements. By weakening, we mean that some states that
violate the constraint will be allowed to occur, but we
expect to emerge with a design that (tends to) minimize the
frequency and duration of such occurrences.

In our example, we will be prepared to consider designs
that weaken C3, and have the choice of whether to weaken
one of both of constraints C1and C2:

Wi1) Weaken just (2, i.e., allow some ‘unnecessary’
waiting.

W2) Weaken just (1, i.e., allow multiple clients to be
simultaneously Using.

W3) Weaken both C1 and C2.

Choice #1 means that we continue to require that at
most one client is Using the resource at once, but will
allow states in which ‘unnecessary’ waiting (i.e., in which
there is no client currently Using, but there is some client
Waiting) occurs. Even though such states are now to be
allowed, we will compare alternative designs to see how
they fare in terms of reducing the frequency and/or
duration of this situation.

Choice %2 is the opposite of choice 1; ‘unnecessary’
waiting is retained as a strict constraint, while multiple
clients Using the resource at once is now to be allowed.

" Airline reservation exhibits aspects of this form of
weakening - up to a point, some overbooking of a
flight is allowed (i.e., more clients may have reser-
vations than the plane can accommodate) rather
than (perhaps unnecessarily) denying them a reser-
vation. Ultimately, the process of taking one’s seats
on the plane imposes a strict requirement, of
course!

An intermediate choice is illustrated by a configu-
ration management system for use within a close-
knit group of software developers; when a devel-
oper wishes to edit some module but the system
cannot rule out the possibility (e.g., because the
network is down) that some other user is currently
editing the same module, its design might be to
allow the user to proceed with editing, and wam
later if simultaneous editing (a violation of con-
straint C1) is thereafter discovered. This design
eliminates unnecessary waiting at the cost of
sometimes requiring developers to combine differ-
ent edits of the same module.

We will restrict our attention in this paper to just the
option W4, in which (2, but not C1, may be weakened.

3.4: Interfaces

In order for a component to ensure the constraints for
which it is responsible, it must be able to distinguish those
of its possible actions that are safe (i.e., lead to satisfaction
of the constraints) from those that are unsafe (i.e., lead to
violation of the constraints) and which therefore must not
be taken. In a distributed setting it is typically the case that
not all of the information a component needs to make these
distinctions is ‘local’ to that component, and therefore it
must obtain the needed non-local information from the
other components. This need for information is the
rationale for the interfaces between components, and how
they are used [6].

" Focussing on €1, which is:
O-3cte2.(Using(c1) A Using(c2) Ac1#c2)
we can see that this implies the addition of the fol-
lowing necessary and sufficient precondition on
the transition of client ¢ from Waiting to Using:
~3dcl.Using(cl) Acl#c
that is, there is no other client currently using the
resource. Conditions such as this can be calculated
given a constraint and a prospective action, by
computing the weakest precondition of the action
that will ensure the continued satisfaction of the
constraint, and simplifying (see [3] for further
details).

In our system, the local information of a client
does not include the status of other clients, hence
there is the need for an interface to provide this
information.

The need to provide information serves as the rationale
for an interface, but still leaves considerable choice in how
to implement the interface, that is, how to provide the
information. We identify three orthogonal aspects of such
interface design:

* when to initiate the transfer of information

» between whom is information transferred

» what information is transferred

We give a simple example, and then examine each of
these aspects in more detail:

Cons:dcr a design in which clients are orgamzed
into a ring, and there is a single token circulating
around that ring, e.g.,

client e,) client

" token
client client

Clients in this design behave as follows: a Waiting
client in possession of the token transitions to
Using; an Idle client in possession of the token
passes the token on the next client clockwise in the
ring; and a Waiting client not in possession of the
token remains Waiting. To be Using, a client must
retain the token; no such client may remain Using
for more than some pre-determined max-using-
duration time. In terms of the aspects identified
above:

 when: information - in the form of the token - is
transferred whenever the client possessing it is in
the Idle state.
* whom: information transfer is to the next client
clockwise in the ring.
 what: the token represents the information that
only the possessor of the token may be in the Using
state.
Use of a token is a common protocol for providing
mutual exclusion in distributed systems [14]. See
[11] for an approach to ensuring that the system
components adhere to this protocol.

When: choices of when to initiate transfer information
range from ‘supply’ style solutions, in which information is
passed as soon as it becomes available (i.., the provider of
the information is keeping the recipient as up-to-date as
possible, modulo communication delays) to ‘request’ style
solutions, in which the recipient must request information
to trigger its transfer. This is reminiscent of forward- and
backward-chaining derivation.

" For example, a ‘request’ style token-ring would
have the token stay put at an ldle client until
request(s) for the token are received. Once
requested, the token will then begin to circulate

, until it reaches the first Waiting client, say.

Whom: choices of between whom information is
transferred include ‘broadcast’ styles, where everyone is
involved, ‘individual’ styles, where transfer is between
pairs of clients or hybrids of these. Transfer may be
determined statically (ahead of time) or dynamically
(based on run-time conditions).

" For example, the ring architecture pictured earlier
employs a static, individual style of transfer, where
each client transfers the token to its immediate
clockwise neighbor.

Altemnatively, an architecture in which a Waiting
client asks all the other clients whether they are
currently Using the resource exhibits the broadcast

10

style.

Finally, consider a central repository to which cli-
ents supply the token when they are not Using, and
from which they request the token; in the case of
competing such requests, is given to the client who
is the least recent user of the resource. This demon-
strates static individual transfer from clients to the
repository, and dynamic individual transfer from
repository to clients.

What: choices of what information is transferred
depend upon whether, and how, the information required
can be decomposed. In the resource allocator, the
information needed by client ¢ is the answer to: =~ 3 cl .
Using(c1) A cl #c. At one extreme are ‘atomic’ solutions
in which the answer to this whole question is transferred -
the simple token solution above has this style, since
possession of the token implies that no other client is
currently Using. At the other extreme are ‘aggregate’
solutions in which every client transfers information about
its own status, and the aggregation of this information is
sufficient to provide the answer. Note that because of
communication delays, receipt of information may be some
time after its transmission. Hence many of the solutions
require the transfer of not simply the status of the sender at
the time the information is sent, but also some commitment
to how that status will or will not change in the future.
Furthermore, with many of these solutions there is the
obvious problem of overlapping information transfers -
because of communication delays, different transfers of
information may be overlap in time. Care must be taken to
design the protocols so that components ‘in the middle of’
one transfer react accordingly if they become involved in a
second transfer. We give brief examples of these
‘aggregate’ style solutions:

* A client, upon becoming Waiting, asks the follow- -
ingl of all other clients: ‘Will you guarantee not to
be Using for at least 10 minutes following your
reply to this query?’. If it receives ‘yes’ answers
from all the clients, it may then conclude that no
other client will be using the resource within 10
minutes of when it first sent out the query (assum-
ing that the local clocks of all clients run at the
same speed; if the guarantee is somewhat weaker
than this, e.g., that for any pair of clients, their
local clocks run at rates differing by no more than

1. Since a detailed exposition is beyond the scope of
this paper, we simply state this in natural language, and
ask the reader to believe that this could readily be for-
mally stated in an appropriate temporal language.

10%, then the deduced time will be correspond-
ingly less). If it receives one or more ‘no’ answers,
it cannot assume that resource will be free, and has
to re-ask the question. Upon receiving such a
query, a client who is Idle must answer ‘yes’ (and
therefore commit to not using the resource for the
next 10 minutes of local time); a client who is
Using must answer ‘no’; the interesting question is
how should a client who is Waiting respond,
because this is the case of overlapping information
transfer: if such a client always answers ‘no’, then
deadlock will likely occur, as the two (or more)
Waiting clients continue to re-ask the question of
each other, always responding ‘no’ when they
receive the other’s query. Thus some sort of tie-
breaker is necessary. Any universally agreed-upon
tie-breaking scheme that linearly orders all clients
would suffice.

A similar solution, that does not make use of rela-
tive clock rates, would be to ask all other clients:
“‘Will you guarantee not to be Using from the time
you answer this question until you send out such a
query and receive ‘yes’ answers from all clients?".
Again, some sort of tie-breaker is necessary to han-

_dle overlapping queries.

3.5: Comparisons

The evaluation of designs is facilitated by consideration
of the same framework concepts. We briefly illustrate this
point on two of our aspects of interfaces:

When; comparison of ‘supply’ style vs. ‘request’ style
solutions reveals that the former tend to lead to more
communication in lightly-loaded systems (e.g., an unused
token flowing round and round the ring of clients), but
under some circumstances can reduce waiting time (since
there is no need to wait for a request to reach the current
holder of the token to initiate transfer).

What: a timed token is more complex to operate than a
plain one (one that denotes its holder as the only client who
can be Using), but is less vulnerable o client failure or
tardiness - the system must wait potentially indefinitely for
the client holding a plain token, but has a finite time bound
on how long to wait for a timed token to cease to be valid.

3.6: Claims illustrated by resource control
example

The example of resource control has, we suggest,
illustrated the elements of the framework that we outlined
in section 3. In particular:

1

Idealized requirements - the requirements C1, (2 and C3
of an idealized resource controller were concise and simple
to state and understand.

Constraints and non-determinism - the formal statement
of clients, and the idealized requirements placed on the
system, were readily captured as a combination of the
possible non-deterministic behaviors of clients (the state-
transition diagram) and the temporal predicates on
behaviors implied by that state-transition diagram.
Responsibility and constraint decompeosition - different
responsibility assignments serve to concisely characterize
radically different styles of solutions (e.g., pre-emptive
scheduling requires Using clients to share responsibility).
To the extent that we developed our framework, the
constraints required little in the way of decomposition.
Interfaces - the most striking result of our attempt to build
the framework for this class of distributed systems is the
flexibility and coverage provided by our categorization of
interfaces in terms of the when, whom and what aspects of
information transfer. Different combinations of possible
choices from among these aspects appear to characterize a
wide variety of solutions.

Weakening of constraints - as expected, we found it
necessary to weaken the idealized requirements in order to
emerge with a realizable set of constraints.

The above arguments and preceding descriptions have
all been in general terms, and/or have drawn upon snippets
of simple examples for illustration. In the next section we
show how two specific instances of resource allocation
problems are located within our design space.

4: Instances within our design space

We now show how a (third-party) description of a class
of resource allocation problems is located within our
design space. We will then briefly indicate how a particular
commercial system exhibits the features discussed.

4.1: Cancellable resource allocator

The problem class description is that provided by J.
Kramer and R. Kurki-Suonio for consideration at their
concurrency and distribution track of the recent 7th
International Workshop on Software Specification and
Design. Their problem statement, and how it relates to our
design space, is shown in Figure 1.

4.2: FLEXIm, a floating license manager

We have also looked in detail at a particular instance of
a cancellable resource allocator, namely FLEXIm, a
commercial license manager distributed as part of Solaris
1.0. Space limitations here permit only a superficial
summary of our study.

Cancellable Resource Allocator Problem statement

A non-shareable resource R is used by a set of user pro-
cesses Ul..n. Access 10 the resource R is managed by an

allocaior process AR. Before using the resource, user

processes request access from the allocator which

“7ésponas with an allocation indication when R becomes &

free. When a user process Di is finished with R it signals

,»°™" the _allocator that it has released the resource. At any
point berween requesting the resource and becoming
aware that it has been allocated the resource, a user pro-

cess may cancel its request for the resource.

A solution should not preclude user processes and allo-
cator from being physically distributed. The system must
ensure that the resource is only ever allocated to one
“~o. user process at atime and should minimize the fimé that

a resource is allocated to a user process that has indi-
- - weakened form of
cated that it does not require the resource any mow\

user processesUl..n
= clients AN

Waiting users = =~~~.,_
responsible for C1

A

‘request’ resource from
allocator

token indicating -*” \ .
=3 ¢.Using(c) ¢ ‘supply’ finished (Using ->

idle) information to allocator

Constraint C1; e cancel = Waiting -> Idle

allocated = Using ~~

constraint C3

(cancel or release)

Figure 1: Locating the cancellable resource allocator problem in our design space

Briefly, FLEXIm permits a vendor of a piece of
application software to ensure that within a network, the
number of concurrent uses of the vendor’s software never
exceeds the number of licenses purchased to run that
software (there are other possible restrictions that can be
imposed, but we will not consider them here). This is a
simple generalization of our constraint C1 that permitted at
most one user at once.

In its default configuration, for each application there is
a single allocator program running on a node within the
network, controlling user access to that application. This
configuration of FLEXIm is thus an instance of our ‘central
repository’ architecture.

To request use of the application, the would-be user
contacts the allocator - i.e., in our terms, this is a ‘request’
style solution, and establishes a connection with the
allocator across which it receives permission to run (or is
denied permission, if there are already as many concurrent
users as licenses purchased).

The application software checks its connection with the
allocator at regular intervals. If the connection is found to
be broken, and cannot be re-established, the application
software will then halt. We recognize this as an instance of
our simple ‘timed token’ style solutions of section 3.4.
Each checking of the connection is equivalent to a renewal
of the right to be using the resource.

There are many more intricacies of FLEXlIm, for
example, backup strategies for dealing with failure of the
allocator. These too, we have found, can be justified in
terms of design approximations of idealized requirements.

12

5: Conclusions

5.1: Current status of framework

At present, our framework is primarily a
conceptualization, lacking the tool support required to
make it readily applicable. Nevertheless, we are pleased
with the insights that arise when simply following its
principles as a mental discipline. We have developed some
of the capabilities that would be required of a more
complete implementation: [6] reports on representation and
reasoning issues of this style of design; [3] on reasoning
specifically about global and local constraints.

For the specific application of resource control, we have
coded simulations on top of two base platforms, Regis [10]
and APS [1] For Regis, we manually transformed a formal
design of the FLEXIm system into two components: (1) A
Regis “configuration specification” that establishes the
distributed processes of the system. Regis hides the low
level inter-process communication and the management of
processes on secparate hosts, leaving a high-level
configuration language as our target. (2) A rule-based
system that emulates a finite state machine for each
process. The finite state machine provides the behavior of
server and clients. For APS, we built simple encapsulations
of our ‘supply’ and ‘request’ style information transfer,
such that instantiations of these automatically generate the
appropriate protocol code for inter-client communication.

5.2: Navigation, evaluation and reification, and
further work

Our original purposes in pursuing this framework were
to facilitate the navigation, evaluation and reification of
designs.

As reported herein, our studies of relatively small scale
problems suggest that navigation is straightforward at least
for these problems. We were able to locate both the
workshop problem, and the FLEXIm license server, within
our framework. The illustrations of section 3 showed that
many variants are readily suggested by varying the
elements of our approach (alternative responsibility
assignments, constraint weakenings, and interface
aspects). Our next step must be the application of this
approach to more complex, larger-scale, systems.

By tying designs back to their idealized requirements, it
becomes straightforward to estimate the ways in which a
design may fail to fulfil its ideals. Furthermore, the relative
strengths and weaknesses of designs can be judged by
consideration of their respective potential for failure. Thus,
we may generate test cases or scenarios during design that
can be run in the production environment to highlight
known problems [6,5). For example, we can use design
knowledge to produce a scenario that puts a load spike on
a resource server, where such spikes are known to cause
problems in existing client-server designs [7].

Reification requires the encoding of the design
principles as reusable code (or, more likely, generators of
code). Our preliminary experiments along these lines
‘supply’ and ‘request’ aspects of interfaces are
encouraging, however much more work along these lines is
needed.

53: Acknowledgments

The first author has benefited from the research context
provided by ISI's Software Sciences Division and has been
supported by Advanced Research Projects Agency contract
No. F30602-93-C-0240. The authors wish to thank D.
Tiktin for his work on the Regis-based experiment, Jeff
Kramer and his group for Regis support, and Don Cohen
for APS support. Views and conclusions in this document
are those of the authors and should not be interpreted as
representing the official opinion or policy of ARPA, the
U.S. Government, or any other person or agency connected
with them.

6: References

[1] D. Cohen. Compiling complex database transition
triggers. In Proceedings, ACM SIGMOD International
Conference on the Management of Data, Portland,
Oregon. SIGMOD RECORD 18(2), June 1989.

13

[2] M.S. Feather. Language Support for the
Specification and Development of Composite Systems.
ACM TOPLAS, 9(2):198-234, April 1987.

[3] M.S. Feather. Towards a Derivational Style of
Distributed Systemn Design. Automated Software
Engineering, 1(1):31-59, March 1992.

[4] M.S. Feather, S. Fickas, and B.R. Helm. Composite
system design: the good news and the bad mews. In
Proceedings, Sixth Ananual KBSE Conference, Syracuse,
NY, October 1991, pages 16-25. IEEE Computer Society,
1991, .

[5]1 M.S. Feather, S. Fickas, and B.R. Helm. When
things go wrong: predicting failure in multi-agent systems.
In Proceedings, Niagara Workshop on Intelligent
Information Systems, Niagara, 1991

[6] S. Fickas and R. Helm. Knowledge Representation
and Reasoning in the Design of Composite Systems. IEEE
Transactions on Software Engineering, 18(6):470-482,
June 1992,

[7] S. Fickas and R. Helm. Automating Specification of
Network Applications. In Proceedings, IFIP International
Conference on Upper Layer Protocols, Architectures and
Applications, Vancouver, B.C., May, 1992.

[8] P. Freeman. A Conceptual Analysis of the Draco
Approach to Constructing Software Systems. IEEE
Transactions on Software Engineering, SE-13(7):830-844,
July 1987.

[9] R. Helm and S. Fickas. Scare Tactics: Evaluating
Problem Decompositions Using Failure Scenarios In
Proceedings of the Workshop on Change of Representation
and Problem Reformulation (Asilomar, CA, April 1992).
Technical Report FIA-92-06, NASA Ames Research
Center, Moffett Field, CA 94025, pages 85-93.

[10] J. Kramer. Regis Users Manual. Department of
Computing, Imperial College, London.

(11] NH. Minsky. The Imposition of Protocols Over
Open Distributed Systems. IEEE Transactions on Software
Engineering, 17(2):183-195, February 1991

[12] JM. Neighbors. The Draco Approach to
Constructing Software from Reusable Components. JEEE
Transactions on Software Engineering, SE-10(5):564-574,
September 1984.

{13] M. Pearce, A. Goel, J. Kolodner, C. Zimring, L.
Sentosa, and R. Billington. Case-Based Design Support.
IEEE Expert, 7(5):14-20,0ctober, 1992.

[14] M. Raynal. Distributed Algorithms and Protocols.
New York: Wiley, 1988.

